Thursday, 5 January 2017

Exponentiell Gleitender Adaptiver Algorithmus

Der Adaptive Moving Average Adaptive Moving Average (AMA) - Technikindikator wird verwendet, um einen gleitenden Durchschnitt mit geringer Empfindlichkeit gegenüber Preisreihengeräuschen zu konstruieren und ist durch die minimale Verzögerung für die Trenddetektion gekennzeichnet. Dieser Indikator wurde von Perry Kaufman in seinem Buch "Marter Tradingquot" entwickelt und beschrieben. Einer der Nachteile der verschiedenen Glättungsalgorithmen für Preisreihen ist, dass zufällige Preissprünge das Auftreten falscher Trendsignale zur Folge haben können. Auf der anderen Seite führt die Glättung zu der unvermeidlichen Verzögerung eines Signals über Trendstopp oder Änderung. Dieser Indikator wurde zur Beseitigung dieser beiden Nachteile entwickelt. Sie können die Handelssignale dieses Indikators testen, indem Sie einen Expertenratgeber im MQL5-Assistenten erstellen. Kalkulation Um den gegenwärtigen Marktstatus zu definieren, hat Kaufman den Begriff des Wirkungsgrades (ER) eingeführt, der nach folgender Formel berechnet wird: ER (i) aktueller Wert des Wirkungsgradverhältnissignals (i) ABS (Preis (i) - Preis (i - N)) aktueller Signalwert, absoluter Wert der Differenz zwischen dem aktuellen Preis und dem Preis N Zeitraum vorher Rauschen (i) Summe (ABS (Preis (i) - Preis (i - 1)), N) aktueller Rauschwert, Summe Absolute Werte der Differenz zwischen dem Preis der aktuellen Periode und dem Preis der Vorperiode für N Perioden. Bei einem starken Trend wird das Efficiency Ratio (ER) dazu tendieren, wenn es keine gerichtete Bewegung gibt, wird es etwas mehr als 0 sein. Der erhaltene Wert von ER wird in der exponentiellen Glättungsformel verwendet: EMA (i) Preis (d. h. ) SC EMA (i - 1) (1 - SC) SC 2 (n1) EMA-Glättungskonstante, n Periode des exponentiellen EMA (i-1) vorherigen Wertes von EMA. Das Glättungsverhältnis für den schnellen Markt muss für EMA mit Periode 2 (schnelles SC 2 (21) 0.6667) sein, und für den Zeitraum von keinem Trend muss die EMA-Periode gleich 30 sein (langsamer SC 2 (301) 0.06452). Somit wird die neue Wechselglättungskonstante eingeführt (skalierte Glättungskonstante) SSC: SSC (i) (ER (i) (schnell SC - langsames SC) langsam SC SSC (i) ER (i) 0.60215 0,06425 Für einen effizienteren Einfluss der Berechnungsformel: AMA (i) Preis (i) (SSC (i) 2) AMA (i-1) (1-SSC (i) 2) oder (nach Umlagerung (I) - AMA (i) AMA (i) aktueller Wert von AMA AMA (i1) vorheriger Wert von AMA SSC (i) I) aktueller Wert der skalierten Glättungskonstante. Fractal Adaptive Moving Average Fractal Der adaptive Moving Average Technical Indicator (FRAMA) wurde von John Ehlers entwickelt, der auf dem Algorithmus des Exponential Moving Average basiert, in dem der Glättungsfaktor berechnet wird Basierend auf der aktuellen fraktalen Dimension der Preisreihen. Der Vorteil von FRAMA ist die Möglichkeit, starken Trendbewegungen zu folgen und in den Momenten der Preiskonsolidierung hinreichend zu verlangsamen. Alle Analysetypen, die für Bewegungsdurchschnitte verwendet werden, können auf dieses Kennzeichen angewendet werden. Sie können die Handelssignale dieses Indikators testen, indem Sie einen Expertenratgeber im MQL5-Assistenten erstellen. (I) FRAMA (i - 1) FRAMA (i) aktueller Wert von FRAMA Preis (i) aktueller Preis FRAMA (i - 1) vorheriger Wert von FRAMA A (i) Stromfaktor der exponentiellen Glättung. Der exponentielle Glättungsfaktor wird nach folgender Formel berechnet: A (i) EXP (-4.6 (D (i) - 1)) D (i) aktuelle fraktale Dimension EXP () mathematische Funktion des Exponenten. Die Fraktaldimension einer Geraden ist gleich Eins. Es ist aus der Formel ersichtlich, daß, wenn D & sub1 ;, dann EXP (-4,6 (1-1)) EXP (0) 1 ist. So wird bei Preisänderungen in geraden Linien keine exponentielle Glättung verwendet, da in einem solchen Fall die Formel sieht aus wie das. FRAMA (i) 1 Preis (i) (1 1) FRAMA (i1) Preis (i) I. e. Der Indikator folgt genau dem Preis. Die fraktale Dimension einer Ebene ist gleich zwei. Aus der Formel ergibt sich, dass, wenn D 2, dann der Glättungsfaktor EXP (-4,6 (2-1)) EXP (-4,6) 0,01. Ein solcher kleiner Wert des exponentiellen Glättungsfaktors wird zu Momenten erhalten, wenn der Preis eine starke Sägezahnbewegung ausführt. Ein solches starkes Abbremsen entspricht etwa 200-Perioden einfachen gleitenden Durchschnitt. Formel der fraktalen Dimension: D (LOG (N1 N2) - LOG (N3)) LOG (2) Sie wird auf der Grundlage der zusätzlichen Formel berechnet: N (Länge, i) (HöchstPreis (i) - Niedrigster Preis (i)) Länge HöchstPreis (I) aktueller Maximalwert für Längenperioden LowestPrice (i) aktueller Minimalwert für Längenperioden Die Werte N1, N2 und N3 sind jeweils gleich N2 (i) N (Länge, i Länge) N3 (i) N (2 Länge, I) Kaufman039s Adaptiver Moving Average (KAMA) Kaufman039s Adaptiver Moving Average (KAMA) Einleitung Entwickelt von Perry Kaufman, Kaufman039s Der adaptive Moving Average (KAMA) ist ein gleitender Durchschnitt, der auf Marktlärm oder Volatilität abgestimmt ist. KAMA wird die Preise genau verfolgen, wenn die Preisschwankungen relativ klein sind und der Lärm gering ist. KAMA wird sich anpassen, wenn die Preisschwankungen sich verbreitern und die Preise aus größerer Entfernung folgen. Mit diesem Trendfolger können Sie den Gesamttrend, Zeitumkehrpunkte und Filterpreisbewegungen identifizieren. Berechnung Es sind mehrere Schritte erforderlich, um Kaufman039s Adaptive Moving Average zu berechnen. Let039s ersten Start mit den Einstellungen von Perry Kaufman empfohlen, die KAMA (10,2,30) sind. 10 ist die Anzahl der Perioden für das Efficiency Ratio (ER). 2 ist die Anzahl der Perioden für die schnellste EMA-Konstante. 30 ist die Anzahl der Perioden für die langsamste EMA-Konstante. Vor der Berechnung von KAMA müssen wir das Efficiency Ratio (ER) und die Smoothing Constant (SC) berechnen. Das Brechen der Formel in Bissgrßen-Nuggets macht es leichter, die Methodik hinter dem Indikator zu verstehen. Beachten Sie, dass ABS für Absolutwert steht. Efficiency Ratio (ER) Die ER ist grundsätzlich die an die tägliche Volatilität angepasste Preisänderung. In statistischer Hinsicht zeigt das Efficiency Ratio die fraktale Effizienz von Preisänderungen an. ER schwankt zwischen 1 und 0, aber diese Extreme sind die Ausnahme, nicht die Norm. ER wäre 1, wenn die Preise verschoben 10 aufeinander folgenden Perioden oder nach 10 aufeinander folgenden Perioden. ER wäre null, wenn der Kurs über die 10 Perioden unverändert bleibt. Glättungskonstante (SC) Die Glättungskonstante verwendet den ER und zwei Glättungskonstanten, die auf einem exponentiellen gleitenden Durchschnitt basieren. Wie Sie vielleicht bemerkt haben, verwendet die Glättungskonstante die Glättungskonstanten für einen exponentiellen gleitenden Durchschnitt in ihrer Formel. (2301) die Glättungskonstante für eine EMA mit 30 Perioden ist. Der schnellste SC ist die Glättungskonstante für kürzere EMA (2-Perioden). Der langsamste SC ist die Glättungskonstante für die langsamste EMA (30 Perioden). Beachten Sie, dass die 2 am Ende die Gleichung quadrieren soll. Mit dem Efficiency Ratio (ER) und Smoothing Constant (SC) können wir nun den Kaufman039s Adaptive Moving Average (KAMA) berechnen. Da wir einen Anfangswert benötigen, um die Berechnung zu starten, ist die erste KAMA nur ein einfacher gleitender Durchschnitt. Die folgenden Berechnungen basieren auf der nachstehenden Formel. BerechnungsbeispielChart Die folgenden Bilder zeigen einen Screenshot aus einer Excel-Kalkulationstabelle, die zur Berechnung von KAMA und dem entsprechenden QQQ-Diagramm verwendet wird. Verwendung und Signale Chartisten können KAMA wie alle anderen Trend folgenden Indikator, wie einen gleitenden Durchschnitt verwenden. Chartisten können nach Preiskreuzen, Richtungsänderungen und gefilterten Signalen suchen. Zuerst zeigt ein Kreuz über oder unter KAMA Richtungsänderungen der Preise an. Wie bei jedem gleitenden Durchschnitt, wird ein einfaches Crossover-System erzeugen viele Signale und viele whipsaws. Chartisten können Whipsaws reduzieren, indem sie einen Preis - oder Zeitfilter auf die Crossover anwenden. Man könnte Preis verlangen, das Kreuz für eine festgelegte Anzahl von Tagen zu halten, oder erfordern das Kreuz, das die KAMA um einen festgelegten Prozentsatz übersteigt. Zweitens können Chartisten die Richtung von KAMA verwenden, um den Gesamttrend für eine Sicherheit zu definieren. Dies kann eine Parameteranpassung erfordern, um die Anzeige weiter zu glätten. Chartisten können den mittleren Parameter ändern, der die schnellste EMA-Konstante ist, um KAMA zu glätten und nach Richtungsänderungen zu suchen. Der Trend ist nach unten, solange KAMA fällt und schmieden unteren Tiefs. Die Tendenz steigt, solange KAMA steigt und höhere Höhen schmiedet. Das Kroger-Beispiel unten zeigt KAMA (10,5,30) mit einem steilen Aufwärtstrend von Dezember bis März und einem weniger steilen Aufwärtstrend von Mai bis August. Und schließlich können Chartisten Signale und Techniken kombinieren. Chartisten können eine längerfristige KAMA verwenden, um den größeren Trend und eine kurzfristige KAMA für Handelssignale zu definieren. Beispielsweise könnte KAMA (10, 5, 30) als Trendfilter verwendet werden und im Anstieg als bullisch angesehen werden. Sobald bullish, könnte Chartisten dann bullish Kreuze suchen, wenn der Preis bewegt sich über KAMA (10,2,30). Das folgende Beispiel zeigt MMM mit einem steigenden langfristigen KAMA und bullischen Kreuzen im Dezember, Januar und Februar. Langfristige KAMA sank im April und es gab bearish Kreuze im Mai, Juni und Juli. SharpCharts KAMA kann als Indikator-Overlay in der SharpCharts-Workbench gefunden werden. Die Standardeinstellungen werden automatisch in der Parameterbox angezeigt, sobald sie ausgewählt sind, und die Chartisten können diese Parameter entsprechend ihren analytischen Bedürfnissen ändern. Der erste Parameter ist für das Effizienzverhältnis und die Chartisten sollten davon absehen, diese Zahl zu erhöhen. Stattdessen können Chartisten es verringern, um die Empfindlichkeit zu erhöhen. Chartisten, die KAMA für eine längerfristige Trendanalyse glätten möchten, können den mittleren Parameter schrittweise erhöhen. Obwohl der Unterschied nur 3 ist, ist KAMA (10,5,30) deutlich glatter als KAMA (10,2,30). Weitere Studie Der Autor bietet detaillierte Informationen zu Indikatoren, Programmen, Algorithmen und Systemen, einschließlich Einzelheiten über KAMA und andere gleitende Durchschnittssysteme. Handelssysteme und Methoden Perry Kaufman


No comments:

Post a Comment